Introduction

Problem

Eye tracking of humans can require very high frame rates to correctly capture eye movement patterns. It is difficult to achieve these frame rates in an embedded system.

- Solution

Accurate and fast eye tracking can be achieved using hardware using heterogeneous hardware specialized for machine learning (ML) on a field programmable gate array system-on-chip (FPGA SOC), and a custom ML model.

Intended Uses/Users

- Uses

Track fast human eye movements for use in larger systems

- Users

Designers \& engineers of larger systems
ex: Disability assistance systems, auto focusing, health evaluation

	RPU	APU	DPU
Primary Function	Track images in memory	$\begin{aligned} & \text { Preprocess } \\ & \text { image } \end{aligned}$	Perform ML inference
Language	C	C++	XIR (compiled ML model)
Compiler	$\begin{aligned} & \text { gcc - GNU } \\ & \text { ARM Cross } \\ & \text { Compiler } \end{aligned}$	ARM g++ (directly on board)	Vitis AI Compiler
Communication Library	Lib	MP talVitis Run VA	AI time RT)

Machine Learning Details
The machine learning models were trained using the TEyeD dataset, which contained videos of eye fraves were used in training with angly 260,000 frames were used in training, with an output of $x y$ coordinates.

Tools used: Python 3.10.0, tensorflow, pandas, numpy, opencv-python, scikit-image, matplotlib, jupyter

Design Requirements

Image of Kria KV260 board

Functional Requirements:

- Take in images from video feed of eye
- Output position of pupil, open/close, and eye movement pattern

Nonfunctional Requirements:

- Process each frame of a video feed in less than $1 / 60$ th of a second per frame.
- Root Mean Squared Error (RMSE) of pupil position estimation be within the radius of the pupil
- Usage of the Real-time Processing Units to enable response to hard time constraints

Resource requirements/constraints:

- Restricted to the Kria KV260 platform

Standards

- IEEE 3161-2022: IEEE Standard for Digital Retina Systems
- IEEE 2671-2022: IEEE Standard for General Requirements of Online Detection Based on Machine Vision in Intelligent Manufacturing

Testing and Results				
Test Type	RPU	APU	DPU	ML Model
Unit Test	N/A	N/A	N/A	Evaluation of root mean squared error on validation dataset with non-quantized model
Integration Test	Measured ability and speed of message passing between APU and RPU. Result: ~7300 messages/sec	Performed ML inference on DPU with images loaded from disk. Measured throughput of inferences including time to load and resize images. Result: 205 frames per second		
Throughput Test	Full system throughput test. Measured time start to finish of inference of 1000 frames. Includes RPU reading frames from memory, sending to APU, which sends to DPU for inference and sends result back to RPU.			
Correctness Test	As part of integration test, confirmed that message contents are not corrupted in messaging system.		DPU inference ence results to antization error	Calculated RMSE of 2.54 pixels, compared to pupil with average diameter 70 pixels and image size 384 by 288

